πTOPMATH.eu
Coursebooks
Books
Questions

TOPMATH.eu

Your dedicated mathematics partner. Empowering students, teachers & life-long learners with quality resources.

Navigation Menu

  • Home
  • Books
  • Blog
  • Questions
  • About

Stay Connected

For questions or feedback reach us at
info@topmath.eu


© 2025 TOPMATH.eu. All rights reserved.

avatar

Latex

Kristian Ye

Asked on: July 1, 2025

$$~\mathcal{G}_o$$


Answers (1)

  • avatar

    Wallon Lenos • July 2, 2025

    $$$$\vspace{-2mm} \begin{equation}\label{eq:MPC} \begin{aligned} \min_{u, y} \quad & \sum_{t=0}^{T-1} \left( \| y(t) - \mathcal{P}(t) \|_Q^2 + \| u(t) \|_R^2 \right) \\ \text{s.t.} \quad & x(t+1) = A x(t) + B u(t), \quad \forall t \in \{0, \dots, T-1\}, \\ & y(t) = C x(t) + D u(t), \quad \forall t \in \{0, \dots, T-1\}, \\ & x(0) = x_{init}, \\ & x(t) \in \mathcal{X}, \quad \forall t \in \{0, \dots, T-1\}, \\ & u(t) \in \mathcal{U}, \quad \forall t \in \{0, \dots, T-1\}, \\ & y(t) \in \mathcal{Y}, \quad \forall k \in \{0, \dots, N-1\}. \end{aligned} \end{equation}$$$$test

    Reference